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MucH attention has of late been paid to a method in analysis known as the
calculus of operations, or as the method of the separation of symbols. Mr. GREGoORY,
in his Examples of the Differential and Integral Calculus, and in various papers
published in the Cambridge Mathematical Journal, vols. i. and ii., has both clearly
stated the principles on which the method is founded, and shown its utility by many
ingenious and valuable applications. The names of M. SErvors (Annales des Mathé-
matiques, vol. v. p. 93), Mr. R. Murpny (Philosophical Transactions for 1837},
Professor DE Moraan, &c., should also be noticed in connection with the history of
this branch of analysis. As I shall assume for granted the principles of the method,
and shall have occasion to refer to various theorems established by their aid, it may
be proper to make some general remarks on the subject by way of introduction.

Mr. Grecory lays down the fundamental principle of the method in these words:
“ There are a number of theorems in ordinary algebra, which, though apparently
proved to be true only for symbols representing numbers, admit of a much more ex-
tended application. Such theorems depend only on the laws of combination to
which the symbols are subject, and are therefore true for all symbols, whatever their
nature may be, which are subject to the same laws of combination.” The laws of
combination which have hitherto been recognised are the following, = and ¢ being
symbols of operation, » and v subjects.

1. The commutative law, whose expression is

TOU=ETU.
2. The distributive law,
7 (u4v) =7u-+wv.
3. The index law,
Fhgty=am+my,

Perhaps it might be worth while to consider whether the third law does not rather

express a necessity of notation, arising from the use of general indices, than any pro-

perty of the symbol .
The above laws are obviously satisfied when # and ¢ are symbols of guantity.

They are also satisfied when = and ¢ represent such symbols as %, A, &ec., in combi-

nation with each other, or with constant quantities. Thus,
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226 . MR. BOOLE ON A GENERAL METHOD IN ANALYSIS.
dw(au)-—a—-
d _du , dv

These properties of the symbol-fl-, taken in connection with the principle above

enunciated, lead to the most important results that have been yet established by the
calculus of operations. We have an early example of their application in the sym-
bolical form of TavLoRr’s theorem, viz.

Sthy=5" “”f(@

A result to which we shall often refer is the following. If we have a linear equa-
tion with constant coefficients of the form
mut At —lut Aan—2u .. +Au=X,
wherein # operates solely on u, and is therefore commutative with respect to A,, A,
&c., then
u={m4 A1+ Azn-2, | +A,}-1X
=N, (z—a;) "1 X+Ny(7—a,) -1 X+ &e.,

N, N,..a;, a,.. having the same values as in the resolution of the rational fraction

1 into a similar series of terms*.
erA L+ A,

It is obvious that the above method is of necessity limited in its application. It
is only in linear equations with constant coefficients that the operative symbols com-
bine in subjection to the law we have supposed. Accordingly it has been remarked,
that the calculus of operations has tended rather to simplify the processes of ana-
lysis than to extend its power.

The object of this paper is to develope a method in analysis, which, while it ope-
rates with symbols apart from their subjects, and may thus be considered as a branch
of the calculus of operations, is nevertheless free from the restrictions to which we
have alluded. The linear equation with variable coeﬁicxents, whether in differentials
or in finite differences, will be treated under the form

So@utfi(m)eutfy(m)eut &e.=U, |
U being a function of the independent variable #, and # and ¢ operative symbols,
which combine in subjection to the law

S(@)gru=g"f(z+m)u,

and which, when the subject function u is unity, further satisfy the relation

S(m)em=f(m)em.

It might be expected, & priori, that a theory of linear equations founded on such a

* Cambridge Mathematical Journal, vol. ii. p. 114, vol. iii. p. 239,
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basis, would be of peculiar character. Its actual advantages I conceive to be the
following:—

1. The necessary reductions, transformations and developments are effected, for
the most part, by theorems, the expression of which is independent of the forms of
folw), fi(m), &e.

2. We are thus able to establish a perfectly general method for the solution of
linear differential equations total and partial in series, and for the calculus of gene-
rating functions.

3. The form of the analysis affords facilities, which are believed to be peculiar to
itself, for the finite integration of linear equations, and for the classification of in-
tegrable forms.

'The received theory of the solution of linear differential equations in series is given
by EvLEr*. It consists in assuming «="2a,x™, and determining by substitution the
relation connecting the successive values of a,, or asitis called, the scale of the
equation. This method fails when, in seeking the first index of a development, we
arrive at equal or imaginary values. I am not aware that any mathematician has
shown how this failure is to be remedied. Now the method developed in this
paper has no such cases of exception.

The theory of series and of generating functions has been successively discussed by
Euvier and Larrace. A full account of their researches is given in Lacroix’s larger
treatise on the Calculus, tom. iii., in the chapters Théorie des Suites and Théorie
des Fonctions Génératrices. 1 class these investigations together, because, although
their objects are distinct, their mathematical theories are virtually the same. EuLer
proposes to determine the generating function of a series, 3u,,¢", when the coefficients
are formed according to such a law as the following :

_(am4-b)am+0b))...
m (cm+e)(eymtey).. L m—re

He shows that by successive differentiations and integrations, the factors am--b,
cm-te... may be eliminated, and the problem finally reduced to the solution of a
differential equation. Laprack<, considering the unknown quantity u, in an equa-
tion of differences as the general coeflicient of the expansion of a function w,
proposes to determine #, and then by expansion to obtain u,. It is not necessary
for us to consider here whether the theory of generating functions is of any im-
portance to the solution of equations of differences. The discovery of the gene-
rating function of a series is in itself a problem both interesting and important.
Those who have paid attention to the subject will, I think, admit that the theories by
which Evrer and Larrace have endeavoured to accomplish this object, labour under
two defects, one arising from the tedious character of the process by which the dif-
ferential equation is formed, the other from the difficulty of its integration. This
does by no means derogate from the genius or the claims of those wonderful men ;

* Calc, Integ. vol. ii. _ 1 Théorie des Probabilités.
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for the value of every discovery is in some measure relative, and is to be measured
by the state of contemporary science as well as by its abstract merit.

The advantages which the method of this paper is believed to possess as respects
the theory of series, are the following :—

1. The law of the series being known, or the equation of differences given, the
differential equation is known by inspection. The rule is absolutely general, whatever
may be the forms of the coefficients.

2. The form under which the differential equation is presented offers great facili-
ties for its integration. Those facilities are chiefly owing to the circumstance, that
the form of the equation permits us, as before remarked, to effect the requisite trans-
formations by general theorems. That this form has a peculiar fitness for the pro-
cesses of integration, is further shown by the circumstance, that the method of reso-
lution which in the common theory leads to the solution of differential equations
with constant coefficients, conducts us here to the solution of a large class of equa-
tions with variable coefficients.

The arrangement of the subjects treated in this paper will lead us to consider,—
1st, linear differential equations; 2nd, the theory of series; 3rd, the theory of
generating functions ; 4th, the theory of equations of finite differences.

" A. Preliminary Theorems.
Prop. 1. Let = and ¢ be distributive symbols which combine in subjection to the

law
ef@u=a(m)eu, . . . . . . . . . . (1)

A being a functional symbol operating on #, in such manner that Af(z)=f(¢(x)), it
is required to expand f(#+¢) in ascending powers of ¢.

We have o
ef(mu=1f(r)eu,
() u=1f(7)¢"u,
e (2)
e (fryu=nnf(z)gmu
Let #+p=1, then f(z+e)u=f(n)u. Now, as n operates solely on u, it is commutative
with respect to the constants in f{»), whevefore

2f(nyu=f(n)m.
Or dropping the subject », and writing = +-¢ for »,
(m+e)f(7+e) =/ +e)(7+-).
Let f(w+e)u=23fm(7)¢™u, then, still supposing » to be understood,
(#+e)f (7o) =72fn(7)em +e3fm(w)em,
= Zufo(@)em+ Sefa(r)e
= Snfu(m)en 4 Shfu(x)gm+1 by (2).
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Under the first 3 in the second member the coefficient of ¢” is #f.(#), and under the
second 2 the coefficient of ¢» is Af,_1(#), wherefore the aggregate coefficient of ¢ in
the expansion of (z4-¢)f(7w+¢) is

(@) FM 1@« . e e e . (3)

Again, we have
ST+0) (7 +e) =3fm(z)em (7 +e),

=2 m(7)emm+ 2fm (7)em 1,

=3f (@) Amagm + Zfm(7)em ! by (2.),
wherein the aggregate coefficient of ¢ is

(TN T+ fn -1 (7).
Equating this expression with (3.), we have

I (@)W + fn (%) = 7f o (7) + 2 1(7) 5
S (W)_Afm—l(”)"‘fm— (7 );

A —m

or separating the symbols,

fa@=0T e, @)

which expresses the law of formation of the coeflicients.

The first term fj(#) is equal to f{#): this may be proved by induction from the
particular cases of (#4¢)%, (v-+¢)% &c., but perhaps more rigidly thus. Let & be a
symbol such that kf(#)=f(#). Then the first term of the expansion of (#4¢)f(74¢)
is kzf(#); but by (8.) this term is zf(7) =#%f(=), therefore

kaf () ==kf(7) ; .
wherefore # and k are commutative. It is hence evident that % can only operate as a

constant multiplier, the value of which is independent of the form of f(#). Let
J(#)=m=, then, since f(#+¢)=n+p¢, it is evident that k=1, wherefore

So(m)=/(7),
and the expansion is completely determined.
Cor. If the symbols 7 and ¢ combine according to the law

eflm)u=flz+Ax)eu,

Az being any constant increment, then
A A® g? A’ ¢ I
S0 =@+ 5f@et 52/ St a5y - - - - (L)

. . A,
the interpretation of 4 being

7T+A7r) —f=) .

A ()=
For AMf(7) =f(=+ A7). Hence xm7r=z-+mAz' and (4.) gives
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Fulwy= oA~

1 A
= aa/m-1(7);
whence the theorem is manifest.
If Ax=—1, we find

1 .
S@+)=fo(m) th(m)e+1/e)e+ &e.,
where f(7)=f(=), and in general f (%) =fn-1(7) —fm-1(z—1).
If Az vanishes the symbols # and ¢ are commutative, 2%, becomes gj‘, and (I.) is re-

duced to TayLor’s theorem.

~ a
Prop. 2. If p==¢(x)¢ @ then z and ¢ combine according to the law
eflzyu=fz+r)eu.

For writing u, in the place of », we have

3§ e f(a:)u, <p(a:)s d’ ﬂx)uw,
=¢(x)Az+r)vetr
d
=f(z4+1)p(x) & ug,
=fletr)eu.
d
Prop. 3. If ,,___”_.i?.(.‘_”)_‘_’_.‘ff___. and g=¢(x)¢" dx, then # and ¢ combine according to the

law

eflmyu=fr—1)eu,
we have f(z)=f (5‘3;-:? ) Now ¢ combines with x according te the law
efl@)u=fletrien, . . . . . . . . . (5)

and ¢ combines with ¢ as if it were a mere symbol of quantity; hence
of (B2 )u=r(=E*7) u by Prop. 2,
=f (E;rf— 1)za;
=f(w—1)gu.
‘This result may also be proved by expanding f (ﬁ-‘i;—'f) in ascending powers of ¢ by

Prop. 1, and operating with ¢ on each term of the series.
d

re d
Ze dr —
Prop. 4. If #="—

% and p=a¢ %, then = and e satisfy the following relations,
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JS@eru=eg"flz4+m)u, . . . . . . . . (IL)
S@em =flmygn, . . . . ... . . . (L)
the subject » becoming unity in the second of the above equations.
d.

. merd_a:’ -y} » d
For in the last Prop. let p(z) ==, and n=1, then #="—7—, ¢=a%"z, and
o f(r)u=f{r—1)eu.
By induction, ¢nf(z)u=/f(r—m)emu;
| S(@)gru=g¢"f(w+m)u,

which is the first of the proposed relations. Now m being a constant is commutative
with 7, wherefore expanding f(#+4m) in the second member by TayrLor’s theorem, in
ascending powers of =, we have

Sf(#@)e"u=g"{ f(m)u-+f" (m)zu- ”(m){%u+&c.}.

For u write u_, then
4
__&e "Gz

TU,=
r x?

DUy — XUy
- -,
r

which vanishes if #,=1. In like manner z2u,, #3u,, &c. vanish under similar circum-

stances, wherefore :
S@)g (1) =¢"f(m)(1),
S(@)e"=f(m)e",

which is the second of the relations in question.
Prop. 5. The same values being attributed to = and g, we shall have

A n
w(w—1).(r—nt Du=a(@+n).(@+@—-r) () . . . (V)
wherein Ax=r.
We have n;r:P—%—‘-x,
1—p~lx
-1 —_—
e TU=—"
4 d _d .
Now e~ lru= (maydx) au=¢ "G x-l\ou=¢ "gu,
8
1l—e d=
therefore e lau= u,

r

(g“lz')n’tL:{l —s; dm} u

Now (e~ '7)2u=¢—lap~lau=p~2(7— 1)au=p—27(7v—1)u,
MDCCCXLIV. 2 H
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and by induction, (e=1%) " u=p¢=x(x—1)..(x—n-+1)u,

e=tw(r—1)(z—n+ l)u:{1 —ir(h} u,

whence z’(z’-— 1). (vr-—n+l)u=g {1—‘ } u.

d
But er=a(2+4r). (4 (n—1)r)s" &,
L1
wherefore w(v—1)(z—n+1)u=z(x+r)..(24 (n— l)r){f d':‘

v
lf “,

=z(x+r)..(z+(r—1)r) (Z%)nu

Scholium. In the values of # and ¢ employed in the two last propositions, if we
d
expand the exponential :'%, we find -

d 1 d 1, d®
%=m(ﬂ+ﬁrd——x—g+mr2@+&c)a
?“‘”(l +rdac +1 2 dx2+&c )
‘Let »=0, then 9r=w—‘—l~, p=ux. Put x=¢, then w:%: e=¢. For bsimplicity, let us

represent % by D, then by (IL), (IIL), (IV.) the symbols D and ¢ satisfy the follow-
ing relations :

SD)ertu=emf D+m)u. . . . . . . . o (V)
SDYyew=Ffmye. . . . . . . . . . (VL)
DO—-1).(D—n+Du=a"(2)w. . . . . . . (VIL)

These are known relations. With a view to the maintenance of an unbroken
analogy, it has, however, been thought better to deduce them from the properties of
the more general system in 7 and g, than to assume them as already proved.

B. § 1. Theory of Linear Differential Equations.
Prop. 1. Every linear differential equation which can, with or without expansion
of its coefficients, be placed in the form
(a+bm+cx2..)g—g+(a’+b’m+c’w2..)-§%f+&c.=x,
may be reduced to the symbolical form
SoD)u+f,(D)stu+fo(D)eu...=U, . . . . . (VIIL)

wherein fy, f1, /3. are functional symbols, and U is a function of ¢/,
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For multiplying by 2", and considering first the explessmn (a+bx+cx )a“”d;,
let #=¢’, we have
(a+4be'+ce®. ) D(D—1)..(D—n+1)u,
=aDD-1). (D—-—n+])u
+b6(D—1)(D—2)..(D—n)u,
+¢(D—2)(D—3)..(D~n—1)?u.

In like manner may every term in the first member of the original equation be
reduced ; also the second member, which is a function of x, will become a function
of ¢/; the aggregate of these results will produce an equation of the form (VIIL.).

More generally, let it be supposed that we have a system of linear differential
equations, total or partial, the dependent variables being wv,.. the independent va-
riables x,x,.. whereof the second members of the equations are functions; if we
assume x,=:¢, x,=¢%.. the transformed equations may be so written as to satisfy the
following conditions.

1st. Every term involving u shall be of the form ¢(D;, D,..)en4+7hy, and similarly
for every term involving v.

2nd. The second members shall be functions of ¢4, ¢4...

Let us now consider the expression fi(D)u-+f(D)eu—+fo(D)eu.., and let us therein
assume %= 3u,e", then passing the symbols f(D), f,(D)... within the sign of sum-
mation, collecting the coefficients of ¢, and observing that fo(D)em=fy(m)em, &e.,
we have

So(Du+f(D)eut-f5(D)e¥u.. =2{(fo(m)um +f (M)t 1 H (MU —2... )™} .. (IX))

which is a particular form of the fundamental theorem of development.

To any aggregate of terms of the form ¢(D;, D,..)enit7hu the same analysis is
applicable, whence our fundamental theorem, viz.

If w=Zupp. "+,

then o(Dy, Dy, )entit b =3{p(mn..) Uy, nerp ™%} o o 0oL (X))

In applying this theorem to an expression consisting of many terms, the sign =
must be affixed to the aggregate in the second member, as in (IX.), and not to each
term separately.

The relation which the first member of (IX.) bears to the linear differential equa-
tion, is the same as is borne by the coeflicient of ¢# in the second member to the
linear equation of finite differences. This analogy extends to the fundamental
theorem, which may be defined as a general relation connecting any linear differential
equation, or system of linear differential equations, with a corresponding equation or
system of equations in finite differences.

2H2
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B. § 2. On the Solution of Linear Differential Equations by Series.
Since, when u=2u., we have

JSoD)u+tf1(D)efu+fo(D)eu...= Z{(fo(m)un+1i (M) ttn-1 +f2(m)um-2...)W} R

it follows that the linear differential equation

JoD)yu+fi(D)u+fo(D)eu..=0 . . . . . . . (6)
will be satisfied by the assumption u=23u,¢™, provided that
Som)umtfi(my s+ fo(m)tnz..=0. . . . . L L (7)

Let p be the lowest value of m, then since u,_1, #,_2, &c. vanish, we have from (7.)
Jfo(p) =0, whence the values of p are determined. If p have n real values, there will
be n ascendmg developments of the form

U=upe? 4 tp 1P o e(P+2)‘ ad infinitum,
up in each development being arbitrary, and the succeeding coefficients formed ac-
cording to the law (7.).
- This method fails when p has equal or imaginary values, but the following rule is
of universal application. '
RuLe.—Solve the equation fo(D)u=0, and let the complete integral be
u=AP+BQ+CR...,

wherein A, B, C.. are arbitrary constants, and P, Q, R.. functions of 0. Substitute
this value of u in the original equation (6.), regarding A, B, C.. as variable parameters ;
the result will be of the form

A'P4+B'Q+CR..=0, . . . . . . . . (XL)
A', B, C\.., being linear functions of A, B, C.., and their differential coefficients; P, Q, R..,
as before. The system of equations

A'=0, B'=0, C=0....

being then integrated by the fundamental theorem, the values of A, B, C will be deter-
mined in the forms A=2a.s, B=2b,, &c., a, bo bemg arbitrary constants*,

The equation to be solved is

ﬂ)(D)u +£(D)eu...+f.(D)eu=0,

in which £,(D)f,(D), &c. are rational and integral combinations of D. This equation

may be put under the form .. .
2{f,D)w}y=0, . . . . . . . . . (8.)
the summation extending from n=0 to n=r.
Now the solution of the equation f,(D)z=0 is of the form
u=AP4-BQ+CR+4-&ec.,, . . . . . . . (9)
wherein A, B, C... are arbitrary constants, and P, Q, R... particular values of
{fo(D)}—10. Substituting this expression in (8.), and regarding A, B, C... as variable

. * The reader may find it advantageous to look over some of the examples in which this rule is applied before
reading the demonstration.
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parameters, we have , ’

' S{f(D)(AP+BQ..)Y=0,. . . . . . . (10)

to determine the general character of which let us first consider the term J.(D)e#AP.
Separating the factors €A and P, if we expand the operatlve symbol f (D), as in

VLEIBNITZ s theorem, we have

JS.(D)e*AP=f (D)e“A X P+f'n(D)e"’AxDP+f’n(D)e"‘AxED2P+&c. .. (10)
The general value of D'P may be thus ascertained :
(D)P=(D){ £(D)}-10,
={/(D)}-(D)0,
={/o(D)}-10,
=LP+MQ+4NR..,
L, M, N.. being arbitrary constants. In the present instance, as P does not involve
any arbitrary constants, and as the direct operation (D)’ cannot introduce any, it is
evident that L, M, N are simply numerical coefficients.

The above expression for (D)‘P applying to every term of the second member of
(10'.), it is obvious that f, (D)¢“AP will be a linear function of P, Q, R.., whose coeffi-
cients are of the general type ¢,(D)e“A, ¢,(D) denoting a rational and integral com-
bination of (D). In like manner, f,(D)¢“BQ will be a linear function of P, Q, R, the
coefficients whereof will assume the form +, (D)s¥“B. Wherefore the equatlon ( 10.)
will become

AP+BQ+CR.=0, . . . . . . . . . (1L)
every coefficient A', B', &c. heing of the type
3(0,(D)sA} +3{4, (D)B} +&c.
and it is to be remarked, that the terms in this expression which correspond to a par-
ticular value of n, are derived from the term which answers to the same value of #z in
the primitive equation (8.).
In order to satisfy (11.) independently of the particular values of P, Q, R, let us

assuine ‘
A'=0, B'=0, C'= .....x...(12.)

Each of these equations being of the genelal form above given, we shall have by

the fundamental theorem, ’
A=3(ane™), B=2(bye™), C=2(cne™), &e.
the successive values of an, b being connected by a system of relations of the general
form,
2(@n(m)am —n) +Z(dn (M) b —s)...=0

To find the lowest value or values of m in @y, bn, &c., we must assume @n-1, bn-1,

&ec. to vanish, whence the last equation gives

Po(m)am+bo(m)bm...=0
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Now this is the type of the system of relations derived from the term f,(D)u. But
the equation fy(D)u=0 is satisfied by the assumption #=AP-+BQ... in which A, B..
are constants, that is, by the assumption u=a,P+5,Q.., whence the lowest value of
m in an bm is 0, and the system (12.) is umvelsally satisfied.

Ex. 1. Let the primitive equation be x2 —((a-l—b— 1)x+qm2)d +(ab+cgr)u=0,

Puttmg x=1¢, we have
D(D—-1)u—(a+b—1)Du—geDu+ (ab+cqef)u=0.

Now ¢#/Du=¢g(D—1)zu by (V.), hence we have
{DD-1)—(a+b—1)D+ablu—(g(D—1)—cq)eu=0,

or (D—~a)(D—b)u— g(D —c— 1)su=0,

which is the symbolical form of the equation, whence w=Su,s, with the relation
' (m—a)(m—byu,—g(m—c—1)u,_,=0,

(m—c—1)tty_,

whence u, =q m—am—5"

The equation (m—a)(m—05)=0 glves m=gq or b, which are consequently the lowest
indices of the development. If, therefore, we represent the arbitrary constants w,, u,
by A and B, we have

_ _a—c (a.——c)(a-—c—l—l). .
u=A(a+g Ta— b0 * T T30+ (a=0+2) * +4&e.)

) b—c (b—e)(b—e+1)
+B(a+g =at ) P T30 —a =049 oot

. ds d? d "
Ex. 2. Given x?’&% + 342 &i—; +m£ +¢a"u=0, to find w.

Putting =¢/, we have by (VIL.),
{D(D—1)(D—2)+3D(D—1)+D}ugeru=0,
D3u+tgefu=0. . . . . . . . o . {13.)

Now as D represents E[%’ the equation D3u=0 gives u=A-+BJ+4C#. Substituting this

value in (13.), there results
D3A +¢e?A+ (DB +¢¢¥B) 0+ 3D?B 4 (D3C+-geC) 2+ 6D*Cé+- 6 DC=0.
Whence by the rule
| D?A +ge*A +3D?B+6DC=0,
D3B+-¢e“B+6D*C=0,
, D3C+¢e“C=0;
wherefore by the fundamental theorem
A=32a, B=3bgv, C=2cgm,
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mPa,4qa,,_,+3m2b, +6mc, =0,

m3b,,+4qb,,_,~+6m2c, =0,

mscm_'— qcm—n= 03
whence we find ~

M2y ==3Mbyy+ 12Cm—n |
m ms

b — mbm-—n"‘ecm——n
m m

Cmn,

cmzh_q m3

J
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(14.)

If we now substitute the preceding values of A, B, Cin the equation u=A-+B4+4C¢?,

and then change ¢ into x, 4 into log », we shall have
u=(ay+a,2"+a,r™...)
=+ log x(by+b, 2"+ by 2*"...)
+ (log @)2(cy+c,@" +cot™.. ),

@y, by, ¢, being arbitrary, and the succeeding coefficients determined by (14.).

The solution of the linear differential equation U=X is found by obtaining a
particular integral, and adding to this the complete integral of the equation U=0.
A particular integral of the equation U=X will be given by the fundamental

theorem whenever X is ‘developable in ascending powers of z.

If X is of the form

Xo+X, log 24X, (log z)2... +X (log 2)" where X,, X, .. are respectively developable
in powers of 2, we must assume u=A+B{..4P¢*, where A, B...P are variable para-
meters, to be determined by the fundamental theorem, in the forms A=3q ¢,

B=23b ¢, &c.

On the same principle we must proceed if such forms as cos (nlog z), sin (nlog ),

&e. are found in the second member.
L e d*u du .
Ex. 8. Given 2? 7= +2 - +2u=log ().
Putting x=¢’, we have

D2u—-efu=20.
Make w=A--BJ, then on reducing

D?A+4-2DB+¢A + (D?B+¢B—1)d=0,

whence, as in preceding examples,
D?A+42DB+¢#A=0,
D2B4-¢#B=1.

This system of equations differs from those before considered, in that the second

members do not both vanish. The fundamental theorem gives

A=3q ¢v, B=2b ™,
2{(m?a,+2mb,,+a,_,)e"} =0,
3{(mb,+b, )} =1,



238 MR. BOOLE ON A GENERAL METHOD IN ANALYSIS.

whence m?a,~+2mb,+a,,_,=0 for all values of m, and m?b,+-5,_,=0 for all values of
m except m=0, which gives m?b,+b,_,=1, or b_,=1; also from the other equation,
a_,=0. From these, the values of a,, b,, corresponding to negative values only of
m, may be determined ; whence writing x for ¢, and solving the above equations rela-
tively to a,,_, and b,,_,, we have

G_g

u=a_,+ +

+logw( e ~2+ +&c)
where
a.,=0,b_,=1;
and in general
’ a,_=—(m?a, +2mb,), b,_,=—m?b,.

This is a particular integral; to ‘complete the solution we must add the general
value of » given by the equation r‘lg;, +w +.qu_~0 which, as in the precedmg ex-

-amples, is found to be
a0+a1.z'+a2¢2 -
+ log x(bo"l‘blw‘l“bzc@z . .),'

wherein a,, b, are arbitrary constants, and the succeeding coefficients given by the law
My, ..y — Qbm 1

bn—s
@, =— —— > b,=~— et

Ex. 4. Given (2*+ga%) %; + (- pa?+5qx3) gg, 4 (n*+pr+(49+r)a?)u=0.
On assuming r==¢, we get
(D2+n?)u+pDelut(gD?+r)e2u=0, . . . . . (15.)
which, as a final example, we propose to integrate both by ascending and by de-
scending developments.

The equation D% +n*u=0 gives u=A cos nd+ B sin nd ; substituting this value in
(15.), and regarding A and B as parameters, we have

(D?24-n2)u= cos né(D?A+42nDB) + sin nd(D2B—2nDA)
pDefu= cos nd(pDe’A -+ pne/B) + sin nd(pDs’B —pne’A)
gD%%u= cos nd(— gn?*A -+ ¢D?**A+2ngD:¥B)
+ sin nd(— gn?%¥B +¢gD%¥B — 2ngD:2A)
re?'u= cos (nf)r:?A - sin (nd)r:*B.

Collecting these results, and equating to 0 the aggregate coeﬂiments of cos nd and
sin nd,

D2A4-2nDB +4-p(Def!A4-ne’B) + (¢(D?—n?) 1) A+ 2ngDe?B =0,
D2B—2nDA +p(DefA —ne/B) 4 (¢(D?*—n?) +7)s¥B—2ngDe¥?A =0 ;
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the solution whereof by the fundamental theorem, is
A==3q ¢, B=23b ¢,

m?a, +2mnb, +pma,,_,+pnb _l—l—(q(m‘z-—nz)+r)a,,,_2+29mnbm_3_0

m?b,, —2mna,+pmb,,_,~pna,,_,+ (q(m?—n?)+r)b;,_,— 2gmna,,_,=0.

Whence making ¢=ux, and determining the values of @, b from the two last equa- -
tions, we have

u== cos (n log z)(ay+ a2+ a2+ &C-)} (16.)

+ sin (nlog x)(by+byx+byr®+ &e.) [ °
a, and b, being arbitrary, and the remaining coefficients formed on the laws
P(m® + 207y — pmndy, 1+ (q(m? 4 30°) + r)maty, _o + 20(qn*—1)b,, _5

a4 = —

m m(m® - 4n?)
p = p(mg + 20%)by—1 + pNGy ) 4 (g(12 + 30%) + 1)mb,, _o— 2n{gn® —'r)am 9
mT m(m?®+ 41 )

If g=0, p=0, r=1, we have for the primitive equation
d*u du
22 o o 2 (n2 4 a?)u=0,

and for its complete integral,
u= cos (nlog x)(ay+a,x®+a,xt...)
+ sin (nlog x)(by+ byx? byt .. ),

where in general

Mg o= 2NE s My o+ 201y, s
@, —=— e b

m m(m?®+ 4n%) m = T mm?an?

The above developments terminate in convergency for every value of . The
more general developments (16.) from which they are derived, become, in certain
cases, divergent, as is seen by making s infinite in the equations determining a,, b, .
The descending developments which are then to be employed may be thus obtained.

We have

(D24-n*)u~+pDefu+ (gD?+4r)e?u=0.
Multiply by =2/ and invert the order of the terms, then
(g(D+2)24r)u+pD+2)s—u+((D+2)*+n?)s~2u=0.
Put 6= —4,, and the above becomes
(q(D—2)2+r)u—p(D—2)¢u+ ((D—2)*+n?)s%u=0.

The equation (g(D— 2)2-|-1)u 0 determines the form of the general solutlon

which will differ accordlng as ? shall be positive, negative, or 0. The process is in

all respects the same as in the preceding examples, except that in the result we shall
1
Oy —
have ¢i= —

MDCCCXLIV. 21
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If —;L is negative, we find

ao+ >+ Ty 60—}- +mQ

p-v-T

U=
2+ J—

q

If ;—:0, the solution is of the form
1 Q) , G b 9
u= 33 @+ +73.. Floga(by+bx+ba?) o -
If—;—is positive,

u= %Q{COS(M glogx) (ao+%+g—§...)+sin («/%logm) (bo-{—%-;-%g__,) } .
In all these the arbitrary constants are a, and b, and the values of a), 4, a,, b, are
determined by equations similar to those given in the former examples.

Objections are commonly urged against the solutions of linear differential equa-
tions in series, on the ground that the condition of convergency is fulfilled only
within narrow limits of the independent variable. Might it not be shown that when
a solution becomes divergent, there exists another which at the same limit becomes
convergent, and that where no second form of solution exists none is needed ?

In general the linear differential equation

SDuA(DYu ... +f,(D)tu=0
has as many solutions in ascending series as there are simple factors in f;(D), and as
many descending developments as there are factors of a like nature in £, (D).

B. § 3. On the Solution of Linear Partial Differential Equations by Series.

Let « be one of the independent variables, » the dependent variable, and let the
particular object proposed be to develope u in ascending powers of x.
Put x=¢’, and let the equation, supposed to be wanting of a second member, be

placed under the form
Tou+Teu+Tye?u...=0, . . . . . . . .(17)

wherein T, T}, T, are rational and entire functions of D and of the remaining vari-
d d
ables «/, 2", and of the symbols - -

Should it then happen that T, is of the form f(D), not involving ', 2".. 5 di”’

we shall assume

Jo(D)u=0,
observing to introduce into the solution of this equation arbitrary functions of &', ',
in the stead of arbitrary constants, and proceed with the result as in the cases already
illustrated.
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Should T, involve &/, 2", &c., the operations indicated may be of a kind which it is
impossible in the present state of analysis to perform. In some such instances they
may be evaded by a linear transformation, and in all cases the difficulty will be placed
in the true point of view,—no slight advantage of the method.

The theory of equations involving a second member is, mutatis mutandis, the same
as explained in the preceding section.

Ex. 1. Let the equation be such, that, on assuming x=¢’, we have

(D—a)(D—b)ut5(y, 3"’37 D)efu=0.
Here, by the fundamental theorem,
u= 2, Eumac”‘,
(m—a)(m—Db)u,+0(y, 5 9m)um_1-—0

The equation (m—a)(m—05)=0 gives m=a, m=>5; and as arbitrary functions are to
be written in the place of constants, we shall have

w=Fa(y)a*+ Faia ()2 Fiap oy (y)as+2..
+Fo(y)al+ Fop1(y) 221+ Fopo(y)a®+2.. .
where F,(y), Fi(y) are arbitrary, and in general for the rest

d
¢(ys ’d—y’m)
Fm(y) (m— a)(mw— Fo- 1(y)
As a particular example, let W:: f(y)@?
Multiply by 4%, and putting z=¢,
D(D—1)u f(y)d =0,

o) gs i) {f(y) % } Foly)

" u=Fy(y)+ 1 ) Tosd
a2
JW) =il ) g ¢ Fily
+Fi(y)z+ 1?/2.3 { 12?/325 @’

2
F,y(y)F,(y) being arbitrary, As the operation, implied by the symbol f(y)%g—s can

always be performed, the above solution is universally interpretable.
If fly)=a? we get

d°F, i ATy
u=Fy(y )+1az (y)“’2+12as4 dy()

a® d°F\(y) ot (y)
+F@let+153 afylsz “"3+1.2.3.4.5 dyl4 ..

Put Fy(y) =9(3)+¥(), F1(2)=u(¢(y) —¥()), and substituting, we get

u=0(y+ax)+4(y—ax),
which verifies the solution.
212
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. . > d d?
Ex. 2. To integrate the equation ng;?wd—:—— f(y)#:O.
Putting x=¢’, we have
Dgu——f@) =0, . . . . . . . . . (18)

The equation D2u=0 gives u=a-}BJ, whlch we shall substitute in (18.), regarding
A and B as functions of  and y. This gives

D2A+9D2B+2DB-—j’(y)-§2—2(ezt’A+9e2"B)=0,
whence by the rule

D2A+4-2DB— f(y)gz%e'z"A::O,

D2B——f(y)§§%eﬂB=0,
applied to which, the fundamental theorem gives
A=3aue, B=3b,",

M2y -+2m b —f(y)di;amﬂz=0,

m?by, f(.y) bm-—2—-0

whence writing x for ¢, and determlnmg @us bw ; observing also that a,, b, will be
arbitrary functions of y, we have
u=0y(y) +,(y)r+¢,(y) 22+ &e.
“Hlog 2(Jo(y) +d1 (y)a+du(y)2*+ &e.),

2o(y), ¢1(y) being arbitrary, and the succeeding forms of ¢,(y), Ym(y) determined
by the equations

dQ m-—2 M-—~2
o) () )~ 2

() =S (y)g‘zjz'lﬁm—z(y)-

Euler has exhibited in a series the integral of the equation

b
dwdy+w+y dx+dy) +Ergee=0

and on that result are founded many of the solutions of pd.l’tlal differential equations
in Dr. Peacock’s < Examples.” We proceed to consider a somewhat more general
equation, of which we shall give two distinct solutions.

Ex. 3. Given g%+/;(m+y)%+ﬁz(m+y)fd’g+ﬁ,(w+y)u=o,

S [ S5 denoting any functions whatever, to find w.

d d d d
Put x=s, v+y=¢, then 5 o= ds+dt W= and transforming, we have
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du  du d d
Gt ae HhOg+ O+ g +fDu=0.
Multiply by s, and put s=¢, we have
d a? . d
L £(0) Dt (st (O HAAO) g Af5(D) ) =0
whence, by the fundamental theorem,
U= D™ == Sty ™,
d 4? d
(2 A0 ) mttnt (24 A O +0) e+ £3(8) )tm-1=0.
Hence, if for u, we write Fy(), the solution will assume the following form,

u=F,(¢) +F (H)x+Fy(£)a?,
where F(¢) is arbitrary, and in general

(§;+(f1(t) +f2(t))gl;+f3(t)> Fr_1(2)

m

O HAOFa(t) = -

whence we have, as the law of derivation,

Fon(t)= — e A0S 500 (s (£,(0) A ) ) ) P (.

243

(19.)

To this we may add a precisely similar solution in ascending powei's of y, the two

together constituting the complete integral.

We cannot, from the above, deduce EurLer’s solution, because that solution is
expressed in ascending powers of £, and not of x or y. If, however, for f(¢), f5(?),
/5(¢) we substitute EuLEr’s forms of those functions, and make ¢=¢’, we shall obtain

the result in question.

The general solution (19.) has been given in order to illustrate the fact before
adverted to, that when T of (17.) is not simply a function of D, the derivation of the
coefficients of the final series may involve operations which it is difficult to perform.

We shall now show how, by a linear transformation, the difficalty may be evaded.

d dds dd d
Assume 2—y=s, v+y=¢, then j =74 == @+m

d d_dds ddat_d_d
an = dsdy Tdidy—di ds’

and transforming the original equation, we find

B (i) ~/O) s (&) HA ) e —f tu=00.

Multiply by s* and make s=s‘, we have, on reduction,

DD—1u— ()=~ B D= 1)etu— (Gt (SO HAD) 4 ) Hu=0,

whence, by the fundamental theorem,
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o
U= 2Up™ == DUy S™,

m(m—tem— () = fo )= Vttm1 —~ (ot AT D) Jtm—2=0. . (20.)

The equation m(m—1)=0 gives m=0 or 1, whence %, and », are arbitrary functions
of ¢, which we shall represent by Fy(¢), F,(#). The value of u,, which we shall simi-
larly represent by Fu(¢), is given by (20.), whence the complete integral will be

u=Fy(8) =F,(£)s+F,(&)s>+F5(£)s3. . . ad inf.,
wherein s=x—y, t=x-}y, Fy(¢), F\(f) are arbitrary, and in general

M=)~ ) + (o (O H0) e £ ) Fostt)
Fm(t) - mm—1)

The derivation of the coefficients is thus always possible.

B. § 4. On the Integration of Linear Differential Equations in Finite Terms.
If we affect both sides of the equation
JoDu+fi(D)eu . .. +fu(D)eu=U

with {£,(D)}-1, and for ﬁ((D)) B wiite g, (D), 94D).., and for {£,(D)}=1U

write U, we have

ut+o(D)ew ... +0,(D)eru=U; . . . . . . . (21)
under which form the linear differential equation will be treated in the following

investigation. :
We however premise the integrability of equations of the form

d
F(f(0)g )u=U,
for, writing f(m)gda} 2%’ whence ¢= f J%, we have

F(l%)u:U,

which, for the forms of F here contemplated, is an equation with constant coefficients.
The linear equation of the first order is an example of the above class, for, writing
it in the form

du
PEZ“-I—’LLZQ,
have onl PL=2 in order to obtai
we have only to assume F—-==7> In order to obtain
t f dt+u
dz
u-e*%th—e f_/ Fpdz.
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Equations of the second order comprised in the above general class are of the
form

{f(w)}2 O+ =T, . . | .. (22)
as is found by writing f(x)@=% in the equation

d?u | di
7 +rgtee=U;

whence t—f ﬁ%
‘The equation (1+ax%) 7= +amg:+n u=0 is a particular case of (22.), and its solu-

tion is determined by the system

dx
t= m’ dtg +n2u 0.
The symbolical form of the equation just considered is
a(D—2)2+#?
u+— D'D)l) Su=0; . . . . . . . .(23)

to which we shall have occasion to refer. ‘ »

In the employment of the general symbolical form of the linear differential equa-
tion, two principal cases will be considered ; the first comprising such equations as
are reducible to a system of an inferior order, by a method of resolution similar to
that which is employed in the solution of linear differential equations with constant
coefficients ; the second including those whose solution depends on a transformation
. affecting the dependent variable ». A more general method of resolution will be
explained in the sequel.

Proposition 1.—The equation

u-+a,0(D)u+a,0(D)p(D — 1)s%u...4a,0(D)p(D—1). @(D-—n+ Devu=U
may be resolved into a system of equations of the form
u—gp(D)efu=U
the values of ¢ being determined by the equation
7"+ Fag > ta,=0. . . . . . . . (XIL)

p(D)p(D — 1)u=p(D)elp(D)eu= {o(D)¢"}2u,

o(D)p(D—1)..p(D—n-+1)u={p(D)e}"u
so that if we represent the symbol ¢(D)é by ¢, the equation in question becomes
(14+ap+tagt.tag)u=U
coe u=(14aptat.ta) U
={N;(1—=¢1e) "'+ Ny(1—g50)""..+N,(1 — 4,2} U,

For

and in general
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provided that g,, ¢.., ¢, are roots of the equation
qn+algn—l+a2qn~—2"+an=0’
and that N,, N,,..N, are of the forms

_ qln——l _ ‘qnn-—-l ]
N= (01— 01— 99) (L — ) N, = (92— 90— 92) (8, — Zn—1)

Let (1—q)'U=wu,, (1 —gy)'U=u,, and so on, then
u; — qreu; =U, or u;—q,0(D)s%u, =1, |
whence u=Nyu,+Nywp..4+Nw, . . . . . . . . . . (24)
wherein w,u,..u, are determined by the system of equations,
u; — §:9(D)eu=U,

Uy~ q,0(D)sfu, =T, (25.)

-----------

The forms of (D) which render the above system integrable will hereafter be deter-
mined. The most important of these is obviously

D+b
p(D)= a&D+b"

which reduces the proposed system of equations to the first order.

For the particular form ¢(D)= (D)™, the equation above considered will represent
the general linear differential equation with constant coefficients; for every other
form of ¢(D) it will represent an equation with variable coefficients.

2

Ex. Let the given equation be (22-+ma’-+nat) g—x%
+(2bx+(a+b42)ma+ (2a+4)nm3)gg+ b(b—1)+(a+1)bma+(a+2)(a+1)na?)u=0.
Putting x=¢, and reducing to the symbolical form, we have

Dia, D+aQDie=l),, _
“Hmp gt ooy Fe=0 - - (6]

Here g¢,, ¢, are the roots of the equation ¢>-mg-+n=0, whence

Y Tk __ 91”1—92“2’
Nh—9% %% 91— 9%
u, and u, being given by the equations

U=

D+a
Uh=q D+be”ul=0,

D+e
%U=%DT% g1y =0.
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From the former of these equations we have
(D+b)u; ~q,(D +a)sfu, =0,
(D+6)ul""q139(D+a+ l)u"—"O,

(x;l—-ti +b)u1-qlx(:c 4 ‘+a+1>u1=0

(zz'-—-qlx?) + (b—(a+1 )cha:)u1 =0,

L} Cy

U FA=ga T P gy

o)1 —go)*=0! +¢g(1 —gy2) 04!
xb(l __glx)u—-b+l(1 __ggx)u——b-ﬂ *
The same process would solve the same equation with a second member X.
The next class of equations to be considered comprises those which are integrable
by a transformation operating on the dependent variable.
As the theory of the general equation

u+¢,(D)s'u+0y(D)e?u ...} ¢,(D)eru=U
is deducible from that of the equation
u+¢(D)eu=U,
we shall first consider the simple case.

- Proposition 2.—The equation u-+@¢(D)e?u=U will be converted into the form
v+o(D+n)erv=V, by the relations
u=ep, U=eV. . . . . . . . . (XIII)

" For assume u=¢"p, and substituting in the original equation, we have
ey 4¢(D)entnp=U,

sty J-g’p(D+n)erv=U, by (V.),
v4o(D+n)erty =c—n1I,
Let e=#U=V, then U=¢"V, and the above becomes
v+o(D+n)erv=V,

f.ou=

as was to be shown.

Proposition 3.—The equation u+¢>(D)s"‘u-‘U will be converted into the form
v4-y(D)ev=V, by the relations

=p, D) 3(D)

u== P,.",(D)v, U"‘P’q/(D)

o L , (D)$(D—r)p(D—27)...
wherein P, *(D; denotes the infinite symbolical product i(Dgi((D -—:))i((D—;))... - (X1V)

v,

For assume u_-f(D)v; and substituting in the original equation, we have

SD)o+(D)erf D=,

MDCCCXLIV. 2K
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s JDo+oD)f(D—r)efv=U by (V.),
D)f{D~— .
o BV, — (D310, L er)
Comparing this with the equation v+ (D)e?0=V, we have

a2 ”-¢(D>,

D)
j(D)-— f(D e e e e e oo (28)
hence JS(D— r)—xp(l) f(D —2r),

and so on, wherefore the value of f(D) will be represented by the infinite product

(D)e(D—7r)d(D—27)...
YDWY(D—r)YD—2r)...

with Siv Joun HerscHEL’s notation for the integrals of equations of finite differences
of the first order, of which, in fact, (28.) i- an example. Hence (27.) becomes

vty D)=V,

» which we shall express under the form P,iﬁg;’ in accordance

with the relations

o p®D) ] ¢(D)
u——P%(D)v, U= P’xb(D)V

As the above Proposition is of great importance in the solution of differential
equations, we shall devote some attention to the circumstances which attend its
application.

That the expression of I’%{% may be finite, it is sufficient that for every elementary
factor (D) occurring in the numerator, there should correspond a similar factor
x(D-ir) in the denominator, ¢ being an integer, and vice versd ; for

xD) _ x(D)x(D—r)x(D—27)...
"D Fin) x(D+ir)xD+G—1)r)...
1
Tx(D+ir)xD+ @E—-1)r)..x(D +7)’
which is a finite expression. Again,
p XD x(Dix(D—r)...
X(D-—n‘) X(Dfir)x(Dw(i+1)T)...
=yD)xD 7). D= =),
which is also finite ; the product of any number of such expressions is finite also.

If %(D) is any elementary factor of ¢(D), it may be converted into x(D--ir); for
let (D) =x(D)x'(D), and let (D) =yx(D+ir)x' (D), wherein ' (D) denotes the product
of the remaining factors, then

¢MD)_p x(D)
P’"xb(D) =P, x(D +zr)

which is finite.
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If ¢(D) involves any factor of the form X(’]C)(E) =% it may be made to disappear; for

let p(D) =7 257 (D), and let (D)=y(D), then

¢(D) x(D)
Pry @)= PrD+iry

which is finite.

From inspection of the above it is evident that if ¢(D) is in the form of a rational
fraction, and it is proposed to diminish (so to speak) D in any factor of the numerator,
or to augment D in a factor of the denominator, by a multiple of r, the process by,
which » will be finally deduced from v will depend upon differentiation ; but if it is
proposed to augment D in a factor of the numerator, or to diminish D in a factor of
the denominator, the process will involve integration. The former is obviously the
preferable condition.

The general proposition (XIV.) amounts in reality to this, that the equation

utoD)eu=U . . . . . . . . . .(29)
may be resolved into the system of equations,

¢(D) ¢(D)
p%(D)ﬂ), U"Pnp(D) B G118
v+4D)erv=V, . . . . . . . . . . (3L)

whence V, v, u are to be successively determined. Of these equations we shall call
the two first the auxiliary ones, and (31.) the transformed one. This premised, the
following are the canons which regulate the determination of the constants.

1. If no factor of ¢(D) disappears in (D), no arbitrary constants are to be intro-
duced into the solutions of the auxiliary equations; those derived from the trans-
formed equation being necessary and sufficient.

D+ea
D&

2. Disappearing factors are in general of the form a—b being a multiple of r.

oy e —b . .
Every such factor will give a system of ir—— constants in the solution of one of the

auxiliary equations; if in that of the equation determining V, those constants will
be arbitrary, but one only will need to be retained ; if however in that of the equa-
tion determining u, one only will be arbitrary, and the rest will be therewith con-
nected by the relation u,,~+¢(m)u,,_,=0, derived from the primitive equation.

The reason why the constants connected with the disappearing factor are arbi-
trary in V alone, is, that V enters into no other equation than the one in whose solu-
tion those constants are found. If however the entire series of constants in V are
retained, they will be reduced to one by the subsequent differentiations in passing to
the value of u.

Ex. 1. To determine the general characteristic of those differential equations of

the nth degree, the solution of which depends on that of the equation %iq’“v:X.
2K2
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The symbolical form of this equation is

topoyomoarye=Y oo - - s (32)

wherein V is the symbolical form of (-‘g—:)‘nX, i. e. the result obtained by writing ¢/

for 2 in the nth integral of Xdz*, no constants being added in the integration. From
inspection of (32.), it is evident that the class of equations sought, must, on assuming
a=¢, be reducible to the form

n

ut STy DT ay . Dra =V

in which we shall suppose the quantities a,, a,, .. @, to be ranged in the order of their
magnitudes. Put u=¢—%%, then by Prop. 2, :

wt pra—ay ey a=eU. . . (33)

The first factor of the denominator of (D) in (32.) now corresponds with the first
factor of the denominator of (D) in (33.). In any of the remaining factors we may
by Prop. 2 convert D into D=-ir, ¢ being any integer,—hence that they may all cor-
respond with the factors of 4/(D), we must have the quantities

a,—a,+1 az—a;+2 o, —a,+3 a,—a,+n—1
n w0 n n ’
all negative integers, which are therefore the conditions sought.
From (32.) and (33.), by (XIV.),
u =P, \pED))v’

o — q _ T .
wherein (D) =50y TDFra—ay YO =t Do

but u=¢—%%,, wherefore
D-1).. [ D—n+1) .
(D-l—ag-—-al) (D+a“_al) ) IR I (54.)

u=s"%'P,

whence the value of u will be deduced from that of v by differentiation ; for since
—ay<—1,
(D-1)
Bty =D=1)(D=n—1)..(D+a;—a,+n),
and so on for the remaining factors to which P, is to be applied.
The two followmg examples will sufﬁcxently illustrate the preceding case.

Pup

6u
Ex. 2. Given dx9+‘1 u-—~3_0 whnch is an equation occurring in the theory of

the earth’s figure.
The symbolical form of this equation is

: qg
. u-—l—mﬁz‘gj 2u=0.
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. . d? '
Here ¢,=2, a,== —3, n=2; also the equation for v is EEZ"'Q%:Q’ whence
v=csin(¢qo+c,); and by (34.),

D—1
u=s‘24P2]—)~_~_—5-v, .

=¢=#(D-1)(D—3)v,

1 ,d2 d .
= \9"7e—3w+38 jesin(gr+c)),

=c{ (%-— 92)sin(qx+cl) —%cos(qx-[fcl) }

The above example might have been treated directly by Prop. 3, and without the
aid of Prop. 2, but the final determination of » would not have then depended on
differentiation alone. Thus we should have had '

9 o
“torgo—3 =0

¢?
v -]—*ﬁ“(]-)—** 2y=V.

P q* _ ¢ X ¢D) __ DD-1) D-1
Here qD(D)_mm’ “’L(D)'“D(D—l)’ whence P2¢(D)_P2(D+2)(D—3)"D+2’
wherefore by (30.),
D-1 D-1
U=[HT5 O=D—+—2V.

As no factors disappear in (D), no constants are to be added in determining V,
whence V=0, v=csin(gz+-c,),

D—1 .
u=p3v=(1—3(D+2)~")csin(gz+c,),
=c(1—3e~%(D)~-1e2)sin(qx+-¢y),
3( d\-1 .
=c(l—-;é<x%> x2)81n(9x+cl),
=c{sin(qm-|—cl)—-%ﬁwwsin(gm—}—cﬁ},
3 . 3
=c{ (l —W) sin(ge4-¢,) +ﬁcos(qx+ cl)}-
‘ . . @u i) _ e
Ex. 3. Given the equation 5—-——uZ4h*=0, i being a positive integer.

This equation, under a slightly different form, has been discussed by Mossorrr i
his memoir on Molecular Action. It has also been treated by Paorr and by Prana.
The symbolical form of the equation is
72
ut (D+i)(D—-z'——1)‘%u =0. . . . . . . . .(35)
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Comparing this with the general form of Ex. 1, we have
a, =i, a@y=—i—1, n=2, ¢=h, whence
D— 1

u_eanQD 2i—1
v being determined by the equatlon dxg+h20=0 Now P2D 23—-~—-(D 1)(D-3)..
(D—2¢+41), and Wutmgx for D, we have
d . .
u=;,;r(wg;:-— l)(xa;-——:})..(xd-;—-m—}—l)v. e« o« . . (36)

The value of # may be otherwise expressed thus. Applied to any subject, we have

1 d 1
1 =D~ =
D—1=eDe~t=z(z )L =a2l 1,

D-—- 3"'93’De—3’~‘x4£l— 2

D —2i4 1 =@~ 1¥Dg—(2i-1)= ‘rzic_l’im-m—x)_

Substituting these expressions in the general value of u, viz.
u=¢=¥D—1)(D-3)..(D—2i+1)v,

=2 () )R (),
z»ﬂ("?' )<‘z'3 m) (‘”3 dr .z""‘"

=gn(e%)

we find

Hence the complete integral of the equation g%‘ '(Hl) u+h*u=0 is

iccos(hx) + ¢,sin (Iw)
U= (13 T

z(z+l)

and that of the equatlon e 2 —s—u—h*u=0is

(:e""'-f-cs —hx

L e €78

which forms are perhaps new.

Equations of the above class have been discussed by Mr. Lesuie Erus, in two
very ingenious papers published in the Cambridge Mathematical Journal*, and it is
Just to observe that the first conceptions of the theory developed in Prop. 3 of this
section, were in some degree aided by the study of his researches.

The two following examples are intended to elucidate the theory of disappearing
factors.

- * Vol. ii. pp. 169, 193.
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Ex. 4. Given (22+a%) st ((a+3)ga+ (b—i-+ 1)a)0e+((a+ Dga—bi)ju=X, the

second member representing any function of 2, and i being an integer.
The symbolical form of the above equation is

(38.)

wherein U= {(D+5)(D—i)}—'X with the relation »=¢. Assume as the transformed
equation,

v+q%_~t~%e‘v=v,. e e e e e . (89)
(D). ' . :
then Pl\b(D)"PlD ._D(D—-l)..(D i+1), wherefore
u=D)D-1)..D—it1Do, . (40.)
U=D)D-1..D—i+)V.{ =~~~ 7 U

Now (39.) gives
(D+b) v4g/D+a+1)p=D+DH)V,

22 4 b+ ga(@ e+ at+o=D+HY,

”=§7(T.|T‘q!}jm“n{ fdea?=1(1 42y D+B)VHC.}. . . . (41)

Now from (40.) we have
V={DD-1).(D—i+1)}-1U,

(D+5)V={DD—1)..(D—i+1)}-1(D+b)U.

But (D4+5)U=(D—:)-1X, whence
D+bs)V={DD-1).(D-i)}-1X.

In performing the inverse operation {D(D—1)..(D—i41)}-! we must, by the
second canon, retain one arbitrary constant. We choose the one derived from the

factor D. Observing then that {D(D-1),,(D—i)}—-l-_-_—{xiﬂ(%)'“}‘l, we have

(+1) X
O+pv=(g) " F+c.
Hence substituting in (41.),

ﬁx[xb“l(l +gx)""”(./ dz'”‘ —7+ C,)}-l- C

x’l( +q&)“_b+l

-r )fvw"<l+ax>"~b(//‘w Bl

$b(1 -+ q‘z.)a—-0+ 1

If X=0, the above gives

) C+C, fdwaz® = (1+ga)~?
b(l +q‘z.)a—b*l
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Ex. 5. Given (l—a@)%+(l%—£—~(4n—p+l)x %—21@(27:-—}))@&:0.

This equation has been discussed by Poisson*. Tam, however, unacquainted with
his results.
Passing to the symbolical form, we have

(D+2n—-2)(D+2n—-2 =D) og
D(D +p) 2dzl 0 . . . . . - . (42.)

which is integrable in three distinct cases.
1st. When p is an odd integer, by assuming as the transformed equation

__(D+2n—1—p)(D+2n— "—-—p) o
D+p)(D+p-1)

v=0,
then operating by (XII.).
2nd. When = is an integer, by assuming
D+2p—2—
,, ____'*;_ﬁ__{:_ﬁ_i’ 2p=V,
which is of the first degree.
3rd, When 2n—p is an even integer, by assuming
- v—ep=V,
An equation similar to the above, and susceptible of an interesting physical appli-
cation, will be treated at length in another part of this paper. ‘
We are now prepared to assign the general conditions of integrability of the equa-
tion u+ (D) u="U.

In the first place, if (D) involves factors of the form g +m, in which -———’3 is an

integer, they may be made to disappear as in the two last examples.

Such factors being then rejected, let the remaining factors, if any, in the numerator
of o(D) be (D+m))(D+m,)..(D+m,), and the remaining factors, if any, in the de-
nominator of (D) be (D+n,)(D+n,)...(D+n,). The conditions required are, that
the quantities. ‘

my—my+1  mg—my+2 m,—m+r—1
r r r

ng—m+1  ng—m+2  a.—n+r—1
r r e r

(43

shall be all integers.
For in such cases the proposed equation can, by (XIV.), be transformed into the

following :
v+ D) fD-1D..(fD=r+ev=V, . . . . . . (44)
wherein f(D) is equal to (D-m,), or to (D4-n,)~1, or to D+m’, according as the fac-

; D+n,
“tors of (D), under consideration, are of the form (D4m)(D+m,)..(D+m,),

1 (D + my) (D +my). (D +m,)
OF DFn)D +1y)..D+m)’ ®' D+a)D+ny)(D+a)

* Journal de I'Ecole Polytechnique, cah. xvii. p. 614.
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In each of these cases (44.) is reducible by (XII.) to a system of equatlons of the
first degree.

If for m; we choose the least of the quantities m, m, .. m,, and for », the greatest of
the quantities n, n, .. n,, the final derivation of u from » will be effected by differenti-
ation. o :

The only integrable forms of the equation u-+ ¢(D)e?u==U, which are not comprised
in the above generalisation, are those which finally depend on a transformation
affecting the independent variable. They are included, so far as I have been able to
ascertain, in the two following general cases, viz.

D+mP+e ,, -
u+ta W =0 . . . . . . . . (40.)
D+m)(D+m) ,
ut "(‘W3 2y = U, « . . « . . . .(46)

wherein »—m is an even, and n,—m an odd integer, positive or negative.

~If in (46.) we assume d=—¢', then multiply by 2, and reduce, the result will be of
the general form (45.), which alone therefore it will suffice to consider.
By the successive application of Propositions 2 and 3 the equation (45.) may be

reduced to the form
JSB=2
v+l =V
and this equatlon may always be integrated by puttmg 2 in the place of ¢, and then

assuming f Viter— Y vide (23.). A single example will suffice.

Ex. 6. Given (l-br2)3~52-— (2m+l)w;l—$-—- (mz—qz)u=0, m being an integer.

The symbolical form is

D+m—2)—g®
u—(%”:)—l‘)—g'eﬂu:o. N CY8
Let u=zs—m%,, then by (XIII.), Prop. 2,
(D_Q)Q__qe o
"= D=m)(D— 1) =0
D —2)%—
Assume ‘ v— (D(D) Coy=0.. . . . .. (48.)

o(D) D(D-1)
Here Pg ‘«”(D)z I)2 (D —m)(D —m=1)"

w=D(D—1) .. (D—m+1jp=2n(2)".

=D(D—1)..(D—m+1), whence

Now (48.) gives (1 —-—x%%’e-—wg% +¢?»=0, which, integrated by the method above ex-
plained, leads to v=c, cos(g sin #—1)-}-c,sin(g sin—1x), whence finally,
u= (gé m{clcos(qsin“lw)+c2sin (gsin=lz)}. . . . . . (49)

MDCCCXLIV. 2L
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By reasoning precisely similar to that of Prop. 3, it may be shown that the equation
u+,(D)efu . . . +0:(D)e*u=U may be converted into the form v+¢,(D)s‘v
+~lan(D)s"’v-V by the assumptions,

_p? (D) e (D) ¢..(D)
u=P g =Py, )7 =Pag p0-

Ce e (XY
_p &:(D), %(D)
U P]\l’l(D)V --an’“( )

Tbat these assumptlons may be realized, it is necessary that (D), %(D) a]m(D)
should be so chosen as to satisfy the conditions,

35(D) _ ¢:,(D)3,(D~—1)
Ye(D) ™ ¥, (D) (D—1)°

-

» ¢n(D) _% (D)% (D"‘ 1)..4 (D"“" + 1)
VD)~ $, (D (D=1) .. (D =n+1)’ ®)
$

These conditions being satisfied, the ﬁrst of the equations (XV. ), viz. u-P, 7 (D)”’

will enable us to deduce « from ».
It is seldom that an application of the above theorem is necessary, and a smgle
example on the present occasion will suffice.

“Ex. 7. Given (a+bx)g+(f+gw)%+ngu=0.

 The symbblical form of this equation is

Assume as the transformed equanon,

f_o
s D+%

1
v+aD+n 18 +aD+n 1¢ M=V,

Here we have
Pl¢)(D)°-P1D+n 1_(D+n._])(D+n—-2) . (D“l"l)’

¥ (D) ‘
D+n—1)(D+n— e
pzx(%;:g( *”D(B(_l“)" D= (D4n—1)(D+n—2)..(D+1),
and tbese forms are identical.. Hence ‘ A
u—(D+n-l)(D+n-2) (D+1)v-—(dw) z““lv, coe e (500

0-—(D+n--l)(D+n-—2) (DEDV. L Lo oL (BL)
As a factor of ¢,(D) has disappeared in the transformed equation, it is necessary, by
the second canon, to retain an arbitrary constant in the value of V. Now the com-
plete integral of (51.) is V=ce—'4c'e~¥.. - (n—1) whereof we shall retain the first
term in the second member. Hence -
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b D+%-2 g 1
R AL S Sy T A 20y — (g—
v+a (D+n—1)“’+a Dyn—1° v=Ce~",

and putting =2 and reducing,

dv  (n—1)a+(f=bz+ga® ~ C
dx ax + ba? V=Pt bay

an equation of the first degree, whence the value of v being determined, that of  is
given by (50.).

The methods above developed are also applicable, mutatis mutandis, to partial and
to simultaneous equations.

C.§ 2. Some Illustrations of a more General Method q]‘ Resolution.

We have, in Propositions 2 and 3 of the last section, fully considered the theory of
the differential equation u4¢(D)e*u="U, and have exhibited in Prop. 1 a method of
resolution by which a more extensive class of equations may be reduced to the pre-
ceding form. In what follows I purpose to exemplify a more general method of reso-
lution, founded on the expansion of f(z+¢) in (I.). This method is deserving of par-
ticular attention for two reasons; first, because, in connexion with Propositions 2 and 3
already referred to, it enables us to integrate almost every class of linear differential
equations that admits of integration in finite terms; and, secondly, because a stiictly
analogous method is applicable to equations of finite differences.

I shall suppose the differential equation to be placed under the form

foDhu+f(D)pD)du+f(D)pD)p(D—1)u ... =U,

where fy(D), fi(D), &c. are any rational and entire functions of D, and ¢(D) any
function whatever of that symbol. A

Let D—np(D)e!=a and ¢(D)s*=¢, then by reasoning precisely similar to that of
A, Prop. 3, it is seen that = and ¢ combine according to the law,

| eflmu=fz—1)eu.
Now ¢p(D)e!=¢, p(D)p(D—1):¥=¢? and so on. Wherefore the proposed equation
will assume the form ~ :
SoDyu+fi(Deutfo(D)Pu+ &e.=U. . . . . . . (52)

But D==-ng, wherefore, expanding the coefficients of the above equation by (I.),
we have

A 2 A%,
SiD)=Fm) g (et i@+ e,
And similarly for the rest, the interpretation of Z?; being

2 fm) =fx)—fa—1).
2L2
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Substituting the expanded forms of f; (D) f; (D) &c. in (52.), we have a result
which may be thus represented : ‘ _
Po(m)u+(7)eu+-0,(7)e+&e=U, . . IR (XVL)
2y(%), ¢1(), &e. being rational and entire functions of . Several distinct cases may
here occur, rendering the above equation either integrable, or reducible to a simple
form.
1st. It may happen that by a particular determination of » the equation (XVI.)
may be reduced to a single term. Suppose that it should give
p(mu=U; .
then if #—g¢,, #—g,, &c. are the factors of ¢,(=), we shall, by resolution, have
u=N,u; + Ny, +Nyu, + &e.
(F—q)u=U
(f"‘92)”2=U- ‘
On replacing = by its value, D—n¢(D)¢, the above system will assume the form
u+¢,(D)efu=U,
which has already been considered.

2nd. The coefficients (=), ¢,(7), &c. may be constant. The equation then be-
comes : ‘

utaputalut-&e.=U,

which has been already considered.

3rd. The equation (XVI.) may, perhaps, be reduced to consist of a pair of terms.
Suppose that it should give ~
o(m)uto(m)eu=U;
this may be reduced to the general form

u+o(w)eu=U.

As = and ¢ combine according to the laws of D and ¢/, the above equation may be
treated by Prop. 2 and 3, C. § 1, and its integrable cases determined accordingly.

In illustration of the above theory, we shall investigate the principal integrable
cases of the equation

(I mad-mah) Tt (Pt mla? 4 a®) o (P 'zl a0,

The symbolical form of the above equation is
{IDD—=1)+ID+1"u++{m(D—=1)(D—2)+m'(D—1)+m'"}eu
+{n(D—-2)(D—38)+n'(D—2)+n"}e?u=0;
or, as it may be written,

UD+a)(D4-B)u+m(D+a)(D+p)du+n(D+a")(D+)u=0, . . (53.)



MR, BOOLE ON A GENERAL METHOD IN ANALYSIS, 259

wherein

— I+ VT—IP—4IF g =l=i= vI=Ip—aw
a7 27

o

y _m'—3m+ v/(m’—m)9—4mm"’ ﬁy_m'—Sm—- V (! —m)? -—4mm"
2m 2m

o= =5t Vmﬁ’_’ B"=n’—5n—- V(W —n)?—4nnl"
2n ' 2n
It may happen that some of the factors, D+4«, D43, &c., are wanting. This would
modify the investigation. We shall, however, here suppose that they are all retained,
and shall seek the conditions of integrability under this supposition.
The equation is reducible to the first order, and therefore integrable, if any of the
following eight conditions is satisfied :
e or B=d or B'=a" or B".
Thus if we have e=c¢'=0", we find
l(D+B)u+m(D+B')e"u+n(D—|—‘8")eZ"u—-(D+oa) 10=ce~*,
which is an equation of the first order.
Suppose that we have
6,:-:“”:6'"_‘— 1’1

= =a —1.] (54)

The equation then becomes

{(D+e)(D+e—1)ut+mD+a—1)D+8)u+n(D+L)(D+G'—1)2u=0;

. mD4p ,  n (D+F)D+p-1),,
o1 v+7 Drat Ut T DFa)Dra=1) =0

which has already been integrated, Ex. to Prop. 1, C.§ 1. There are several other
cases in which this method of reduction will apply.

- If the conditions (54.) are not both satisfied, let it be supposed that the first is
satisfied, we have

(D+a)(D+B)u+FD+4) (D+B’)E‘u+7(D+B') D+~ De¥u=0.
Put (D+p)sf=¢, D=7+¢e,
then (D+a)(D+B)u+T(D+)eu+7¢2u=0.
Expanding the coefficients as directed in the rule, we have

(D+2)(D+P) = (74 (x+B8) +¢ @7+ a+B—1)e+ ¢ ?(D+w')=’?(vr+m’+qe);

the substitution of these values will give
(7+e) (7“'+f3)u+{<29+?;>%?+ g(a+tB— 1)+£;0¢'}§u+ (q2+m7q+%>5215=0;
or, as we may for simplicity write,
(z4a) (74 B)u-+ (Az+B)ou+ Celu=0,
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wherein A=2q+7—7—;, B=q(m+ﬁ-—-])+7%x', C=q2+%q+%-

This is integrable in several distinct cases.
1st. Put C=0, and taking either value of ¢, suppose that we have A=0, B=0, then
(7o) (z+Bu=0,
which is reducible to a pair of equations of the first order, and is completely inte-
grable.
2nd. Determine g so as to satisfy the equation C=0, then
(74a)(z+LB)ut(Az+B)eu=0,

7r+§

or Ut AT Th)

eu=0.
s . B .. )
This is reducible to the first order whenever - differs by an integer from « or (.
B . . .
Thus, suppose that - —« is an infeger, then assuming
v-l—w n ﬁgu_—-_O,

B
+_..
we have Pl?i,(g;))vﬁ_l)l,,_}_Av = 7r+A> (7’+K— l) (7+a+1)v.

The equation for determining v is of the first order, and the derivation of « from v is
effected by processes which involve differentiation only.
3rd. Let A=0, and determining ¢, let B=0, then

C
—_— 20—
u+(7r+“)(w+ﬁ)g u=0.
Suppose « greater than 3, and assume

C
P EraE et =0

then u:Pg—W_H% v=(7r+w— D)(#4e—3)..(z+B+2)v.

Here it is necessary that « and (3 should differ by an integer. The equation deter-
mining v is reducible to a pair of equations of the first order, and » will be found, as
in the last example, by differentiation ; thus,

m=(D—gglv={D—q(D+p)}v,
={D—g¢e/(D+£'+1)}v,
= (2—qa) 2 — g(B'+1)av.
If in the general equation (53.) we assume d=—/, and multiply by ¥, we find
n(D' o' —2)(D' =" —2)u+m(D'— o' —2) (D' —'—2)fu+ (D' -2 —2)(D' - f—2)e#u=0.
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Let u=¢2*v, then :
(D —a")(D-B"ut+m(D' —) (D' —f)eu+ D —a)(D'—B)e¥u=0, .

. a . . . . . o s
wherein D'=—;+ The comparison of this equation with (53.) shows that if in the

equations of condition which we have obtained, we change « into —e', 8 into — (3",
I into n, and wice versd, we shall obtain a new series of conditions of integrability.
There are probably a few cases which the above analysis would fail to discover.
Should the attention of analysts be turned to this subject, it is not unlikely that we
shall soon be able to tabulate the forms of f{(D), f1(D), f,(D), which render integrable
the equation
’fo(D)u—I—fl(D)e"u-l-fz(D)s?"uzU,

an object which I bave endeavoured to accemplish for the case in which the first
member involves only two terms.

D. Theory of Series and of Generating Functions.

Let wa?+u,,,a”...4ux' be the proposed series, and let the law of derivation of
the coeflicients be
u, o (Mm@, (M), _,=0, . . . . . . . (55.)
alaw which we shall suppose to obtain for every set of 41 consecutive coefficients of
the series. This condition excludes from (55.) all values of m from p to p+n—1, and
from £41 to £-+n, i. e. the n first values of m in the series, and the n first values of m
following those in the series, because for such values of m (55.) ceases to be a relation
connecting n+-1 consecutive coefficients of the series proposed. Now by the funda-
mental theorem, if w=2u a™=23u ¢, then

u+ ¢, (D)elu..+ ¢, (D)eu=2{(u,,+¢,(m)u"""..4-¢ (m)u"")em},
but by (55), the expression u,+4¢,(m)u,,_,+&c. vanishes except for the values of m
above particularized, hence to those values alone of m is the summation in the second
member to be extended. The result may be expressed in the following theorem.
If u=Sunam="2u.e", and if every n-+1 consecutive coefficients of the series are con-

nected by the relation
Um +¢l(m)u -—l'“+¢n(m)um-n=09

u+¢l(D)e’u..-{-—qbn(D)e""’u:E{(u,,,-I—cpl(m)u, _1..+¢n(m)u,,,_,,’)em"}, .+ (XVIL)
the summation 2 in the second member of the equation extending to the first n values of
m in the original series, and to the first n values of m following those which are found
in the series, every value of w, being rejected which is not contained in the given series.

The following are particular deductions from the above theorem.
Let u=w,a"+u, """+ 1t,.,,8”*...4+ua, and let the law of derivation of the coeffi-

cients be u,=p(m)u,,_,, then
u'm—¢(m)um—r:: 0,

U— ¢ (D)Eﬁu = 2 { 'Ll(m - @(m)um—-r)snm} .

then

(56.)
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Here the only values of m, whereof account is to be taken, are p and ¢4r. If
m=p, we have, under the sign of summation, the expression (u,—@(p)w,.,)s*, but
u,_, not being a coeflicient of the original series is to be rejected, so that we have
simply w,e. Assuming m=#-r, we have under 2 the expression (u,,,—@(¢+7r)u,)
¢ from which «,,, being rejected, leaves —@(¢+4r)u,, wherefore

u—o(D)eu=u,er’ — Q(t+r)ugi*,

Since by (56.), u;.,—@(t+r)u,=0, the above equation may be written under the
somewhat simpler form,

u—@(D)eru=uer’—u,,, % . . . . . . . . (67)

If the series is infinite,

u—o(D)elu=uer. . . ..o (58)
Let u=w,a”+u,, 2" +u,,2"*...4ua’, and let the laW of denvatlon of the coeffi-

cients be

um+¢l(m)u -1+¢72(m)um;2'=0.
Here by the theorem,

w0 (D)eu @y (D)= 2{ (u,,+ @, (m)ty,_, 4 @o (M)24,, )"},
the values of m to be considered being p, p+1, ¢-41, t4-2.
Whence the second member gives
" (U101 (P A+ 1)ety) 67 A (@1 (4 Dt @84 1)ty )6+ -0y (£ 4-2) 420,
This expression also may be simplified, as in the preceding case, for
Upsr +O(p+Dtty= —@(p+ 1),

Q1+ 1)t Qo+ Dty = — 1.
Wherefore finally,

u+¢1(D)s”u+<p2(D)eZ"u=u P — Qo Pt 1)ty 6V — 10 s o (£ 2)u s, L L (59.)

nQ 2_22 2 2_22 2_42
Ex. 1. Let u-—l-—-—-— 224 1n2 EW) )x“—-n (n 1‘23.(2 )w“—{—&c.
2. —
Here u,= w?—;{(—%n:i%)—um_m wherefore by (57.),
(D—2)2—n?

e T oty —
U—"BD—1) * u=1.
d*u  du
(1—a?) 75 —a - +n?u=0.
u=c,cos(nsin~'2)4-¢,sin (nsin~'z).
Determining the constants by comparison with the original series, we find
u=cos(nw), wherein w is that value of sin~'x which lies between ——; and lzr—

n?—12 (n2—1%) ne-—-?ﬂ)
_ 3
Similarly for the series e— 55z 254+ —557=
The correctness of these results will be shown by substituting Poinsor’s expansions,
Ex. 2. To sum the remainder of TavLorR’s series, viz.
dn¢ (a) " dn+l¢(a) xn+l
da® 1.2..n da™t! 1.2, n+1+ &e.

5 —&e., we find u——l— sin (nw).
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1 d 1 d
Here un= - —ttm_1, O Um— 5 Fttm-1=0, whence
d, _dgla) =
—(D)-12 .4, LA
u—(D) "= "da 120
du d dida el

s gy T
A da® T da 1.2n—1’
du du d"¢(a) an1

de” da™ da* 1.2.n—1
a partial differential equation of the first order, of which the complete integral is

_ ¢(a) ¥ 'dx .
“—exda</; it da” 12..;3—1""‘”‘”)?

TG, ~ldx d»
e e dar $la— @)+ blata),
- denoting an arbitrary function.
Now u vanishes with 2 whatever way be the value of a, therefore the arbitrary
function and the lower limit of the integral are each 0; wherefore

d
- ar! _dtdle—a) 0 L . L. (60.
u—z-/.dIQn 1 dar (60.)

d
the symbol ¢ * X “implying that after integration we are to change a into a+x.

Series of the class f(p)ar4f(p4r)av+rLflp+2r)ar+2 4 &c., wherein f(m) is a
function of invariable form, may be reduced to linear equations with constant co-
efficients.

We have u=f(p)ar+f(p+r)ar+r+ &e. Here un=f(m), tn—r=f(m—r), hence

f(yfriﬂ)r_)”m—” Or Uy — f(jm(mr)”m »=0, wherefore
f(Jg )r)s“’u—f(p)el"’ N (1
Assume v—¢?v=V, then P, ¢(( ))-_PT jf _f(D) whence
u=fD)v,
Sp)e'=fD)V.
The last equation gives V=¢#/, therefore v=1_5f:r ., and
u:f(p)i_z”_”ﬂ.. C e o ... .. (XVIL)

This remarkable result may be otherwise obtained; thus,

u=3"""f(m)em= Z::: (D),

=AD)37)

MDCCCXLIV, 2 M
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If we wish to sum a finite portion of the development, let f(p)z» be the first term of
the series as before, and f{p')z# the first term of the remainder of the series, that is, of
the portion following that which is to be reduced to a finite form, then

ol !
u-——f(D)l“m B (i 28]

Ex. 3. Let u=1.2..nx+42.3..(n+1)2%+43.4..(n+2)23. .. +¢({t+1)... ¢+n—1)z’.
Here fim}=m(m-+1) ..(m-+n—1), therefore
u=D(D+1)..(D+n—1) ‘i:i(flll’,

N ARNIPY et il
7 1—2 ’

_ ( )nwn mi—}"ﬂ
=T\ge) 1=z '

Ex. 4. Let u=1nx+2m24323 . .. iz,
Here f(m)=m», whence

u=Dr—" "

————g

—e(t+1) ( d\"z—att?
1—é Tiz) 1—=

Ex. 5. Let u=1+(cos v)z+(cos2v)x?+ &ec. to ¢ terms,
Here f{m)=cos(mv), wherefore

___..(evD«/ 14 g—tDY—1 )1—“"
1 i(l—l—w/-—-l) t(l-—v«/-—l))
=7 AoV T a=ev=1

i —xcos'v——x’cos(tv) +.z"+’cos(t l)v
1—2xcosv+a*

428 52t 62° .
Ex. 6. Let u=y53+533 3555+ &c. ad inf.

—

Here f(m)..;n*(-ﬁ:i)(m 3y whence

o D+1 Pl
Y=DD-1)D—2)1—¢’

_{_D~1~2(D-1) 42 (D— 2)~1}»?i,,

= {-—D“ —2¢D- le“‘+-52‘D 15“24}

1—”

e, do 9 de (16
2 1 —¢f : +~9 - —

21...mf+f1
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Effecting the integrations, and determining the constants by comparison with the
original series, we have

u=—% mz———;ﬁc-—- (—;— -»»2.90-{»%— ch)log(l —2).

When, as in the above case, the factors of the denominator of f(m) are equidifferent,
the value of 2 may be determined by the solution of an equation of the first order.
Thus :

_. Jo) A1) PAC) .
Ex. Let u= 7= +5=' NCES)) m+3.4._(n+2) 224 &e., ad inf.,

wherein f(m) is of the form a-+bm+cm?4 &e., being finite and not involving any
negative or fractional indices.

. Sim)
Here Un = 1) (m+ 2)- ()’ whence
Sfm)  m

Um— ﬂm—-l) m+n mt s Ym-1=0,

AD) D, _ S0
j(D 1)D+n 1.2.n

Assume
v—pH7 —ev=V,
we find u=f(D)v, o (QO)n—f(D)V, whence V:TT;TZ’ and substituting
D , 1
R A e TERL

(D+n)v—¢(D+ 1= 1.2..(:2-1)21‘(17;)’

(1 —efyn=t enddh
U= Twyed S 1=

(1 —ef)n— enddlf
u=f(D) P(:;)end /11 ™

d (l—w)"“ % g~y
n)f ( o =2

a vesult always finite when n is an integer.

The theorem (XVIIIL.) may be extended to series involving any number of variables.
Let u=3 f (mym,..)e,™x,"s.., J being a function of invariable form, and the summation
> extending to all positive integer values of mm,.., then

1 X
u=fOD, )y gy (63.)
wherein ¢#1=z,, ¢h=x,, &c. The performance of the operation f(D,D,..) will involve
differentiation, or the solution of a partial differential equation with constant coeffi-

cients.
2 M2
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A still more remarkable theorem is the following.
Let u=73 f(mm,...m )x,"v,"..x,"", the summation evtending to all positive integer
values (0 included) of mym,..m_, which satisfy the condition
my-+my...4m, =y,
then if ¢h=u,, ¢h=u,, &c.,
u=f1D.Dp..D ) {X e+ X, 4+X %}, . . . . . (64)

wherein
5(""‘ 1)41

(661 —&f2) (1 —e%5)... (%1 —gfn) ’
g(n—1)4,
Xp= (o —eh)(fa—efs) .. (efa— e”'n)’
and so on for the rest. Whut is particularly to be noticed is, that the quantities
X, X,.X are independent of ».
Lastly, if the condition under which the summation is to be eﬂ'ected 18

my+my.. +m =,

Xi=

the rest as before, then
1 __E( v+1)4, 1 — (1)
u=fDy, Dp.D){ X, R s

As an example, suppose it requlred to obtain a finite expression for 2(mna™y")
subject to the condition

+&e.}. ... (65.)

m-+n=y,
Here by the theorem,
LD 1)

u=D,D { —~—}
2 Eol 502 592 - 591 ?

_ d? p+l_gp+1

—"Z:I/d.z'dy z—1 ’

(= 1) (41 —pHD) 4 (v 41) (agp —27),
(z—y)?

=y

Thus let v=3, we have
22— 425y 4 4y —21/
= (@=y)’

=22% 4222,

as it evidently should be.

D. § 2. On the Theory of Generating Functions as connected with Equations of
Differences.

The complete solution of the equation of differences

| %, @ (1)t Qo (M) s +@, (M), =f(m), . . . . (66.)
involves n arbitrary constants. This implies that » successive values of », may be
regarded as indeterminate, the remaining values being thence formed according to
the law of which (66.) is the expression. The research of the generating function of
u,, implies the finding of a function u, developable in a series, 2u, 2", of which the
first index p, and the first n coefficients w,, u,,,..%,.,, are arbitrary, and the remain-
ing coefficients are formed in subjection to the law (66.).
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In what follows we shall suppose that the first index p is 0, and that the n arbitrary
coefficients of the development of » corresponding to the = arbitrary constants in the
solution of the equation of differences, are wu,, %,..«,_,

Let f(m)=t , then

um-l-qbl(m)um_l...—l—cpn(m)zam_,,f—tm=0.

Let also ¢ be the generating function of £, as is u of ,, so that

u=23"""(u_e)t=23"""(t ).

By the fundamental theorem of development,

ut@(D)u..+ ¢, (D)eru—v=3{ (0, +@,(m)thyr0. +, (M)l —1, )6}

Now considering the expression in the second member under the sign 2, let m=0,
and it becomes u,—#,, for which as u, is arbitrary, we may write c), an arbitrary con-
stant. Secondly, let m=1, we have (u;+@,(1)u,—t,)¢!=c,¢, since w, is arbitrary. In
like manner may we proceed till we arrive at the assumption m=n—1, which gives
the term ¢, " ". For all values of m greater than n—1, the expression under
vanishes by (66.), wherefore

u+o,(D)u...+¢ (D) u—t=cy+ ..+,
or replacing ¢ by its value, and transposing to the second member,

u+0,(D)eu..40,(D)eu=3,_, fim)e+cy+ e 4 e s L L (XIX)
Ex. 1. Given +a1————”—7: 1um ,+a2ﬂ~%-—2 U,_y=f(m) to find the generating func-
tion of u_.
Here by the theorem
D— 2n -2 o
u—l—ax1 e"u—|— ay- y=t+tcy+ced, . . . . . (67)

wherein ¢=3,_, f(m)s". Hence

di
Du+a (D — n)u+ae2(D — 2n)u= a%—i«» ¢,

ﬂ+c
‘_.l_zf_-n “1+2.“2"f" - u—ﬁ,_mq‘ﬁ_ﬁ,{_”,
de 1+ ax+ap®  1+az+ a0’
(der cl)d.z' .
u=(1 +a12+azx2)" (F ot ag n+1+ .. . . . (68)

The value of t will of course be found by the precedmg chapter. Suppose asa

. 1
particular illustration that f(m)=15—> then ¢=¢", whence

+C,
u=(1+az+a2’) {ﬁﬁ:ﬁ‘ﬁm+c} :

Let f(m)=0, and further, let C;=0, then
u=c(l +a,v+a,2*";
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this value of » involving but one arbitrary constant, the coefficient of the first term
only of its development will be arbitrary, and the rest will be formed in subjection to
the law proposed.

Ex. 2. Let the equation be um—l—ﬂﬁm)l)a‘;:iz m__1+ﬂf(m) )agziz tm—o=F(m).

By the theorem we have

D) aD+5 D) a,D+5,, —_—
”“'"f({)(—-)l)a;Dibl‘d +f(I];( %“ZDL u=3""F(m)e™'+cy+cs’.

aD+b , | aD+by,,
aD+bcd - D+b£ v'—-—V.

Assume v

Here Pv(“];(D)I)._szg)(D)Q) =/f(D), whence observing that -2 j(o) f(l) are stlll arbi-

trary,
u=f(D)v,

a,D+5, a, D+ m—-wF(m)
8 ) B AL s N aLRC T I el S A

From the second of these equations, which is linear, and of the first order, the
complete value of » will be found, whence that of » will be obtained by differentia-
tion, or by the solution of a differential equation with constant coefficients, according
as the form of f(D) may determine.

D. §3. On the T/zeory of Generating Functions as connected with Equatzons qf
Partial Differences.

We shall confine our observations on this subject to the case of equations involving
two independent variables, the most general form of such equations being

QoMM Umn  + (M) U170 - Po(MA) U2 . . .
+do (M) umn—1 4y (M0) 10— 1 Yo (M) g 201 . }—‘f(mn)
+ %o (MN) U2 +)C1(mn)um-—lm—-2 +%2(mn)um—2.n——2
The above equation may be placed under the form

2o(mn)um—rp—p=fmn), . . . . . . . .(69)
the forms of p(mn), and the value of » and r!, being different in different terms of
the equation, the greatest difference of the values of r we shall represent by ¢, and
the greatest difference of the values of »* by <.

Let » be the generating function of wu,, its development 3 (umm2™y") being arranged
in ascending positive powers of the variables, the lowest index of each being 0. By
reasoning similar to that employed in the preceding chapter, it may be shown that
the equation for determining the value of » will be

3{p(D,D?,)ert+r? y} = 3 { f(mn)em+n?'}
F O (") + Py ()¢’ . .4 Dia (69)eli-1)
FE )+ F () F T ()0, L (XX)
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wherein ¢=x, ¢=y. The summation 2 in the second member extends from m=0
to m=w, and from n=0 to n=o. The functions @y(¢’), ®y(sY), &c. are in general,
but not always, arbitrary and independent. Their forms are in each particular instance
to be determined by the initial conditions of the problem.

Ex. 1. Let the proposed equation be #pnn—2%mnn—1—2%n—-10-1=0.

This is one of Larrace’s examples. Applying the theorem, we have

u—22’u—2e‘+"’u=(1)0(s"')—{—\I’O(e’),. N LD
Dy (y) +¥o(2)
=P,

To show in what way the arbitrary functions are to be determined, let it be supposed
that when y==0, w=f(x), a known function, and when £=0, u=f(y), a known func-
tion also, then in (71.) making successively =0, y=0, and x and y together =0, we

have
Do(y) + (0

“—”i—‘-‘z—?——“‘_fl(y), T T (72)
D) 0)+¥o@)=Ff@), . . . . . . . . .(73)
QyO0)+F(O)=A0), . . . . . . . . .(74)

(72.) X (1—2y)+(73.)—(74.) gives Qy(y)+¥o(2)=f()+ (1 —29)fi(y) —f(0), whence

p=t@+ =29 (H) —=A0),
'"' 1—2y—2zy

m m 1
Ex. 2. Let um;n+almum—l.n+agum.n—l+bmum~—l.n—l=m‘

Here, by the theorem,

D
u+al_Dg__ielu+azeﬂ'u+bD — leﬂ-H'u:geé-}- 5‘9’+ @(e")-]—"f’(e”).
A v+a,ev+4a,’ v+ be!Hv=V, then P Do 1
ssume +a 2 =V, ID+1—D+7Y

whence u=(D+1)"v=e*’(D)—le"v=% ﬁdx also V=(D+1)U

= (2 1) (494 P(y) + ¥ (@) = (@ Do+ Fia) - Fy 1),

the functions F(x) and F,(y) being arbitrary. Hence the equation determining v
becomes
v+aav+ayv+-bayv=(x+1)e*+v+F(a)+ Fy(y),
_ @+ + Rz )+ @)
T l4awtagy+bay

e+ 1) +F@) + Fy(y) §
U= ﬁ l+a1.z'+a2y+b.z'y L (/5.)

Had the second member of the original equation been 0, we should have had

F(z) +F\() , =6
=L e GO)

Suppose it heve, as before, required to determine the arbitrary functions by the
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conditions that =0, y=0 shall respectively give u=f(x), and u=f,(3); differenti-
ating (76.) and proceeding as before, we find

L O ad) (s 1))+ 0+ ai) —110)
u::;:/c}w 1+a,z +agy + bzy

The general theorem (XX.) applied in the two preceding examplés is formed on
the condition that the generating function # shall involve in its development positive
powers only of x and y. This condition introduces into the second member a greater
number of arbitrary functions than would otherwise be necessary. If, for example,
it were merely required that the indices of y in the development should be positive
and ascending, the form of the second member of (XX.) would simply be

()5 ol () by () 2 ()7
Which of the two assumptions is preferable or necessary must be determined by

special considerations. ‘
As an example of the latter form, let us take the very simple equation

m(m— 1)y, ,_y—a’n(n—1)u,_,,=0.
We have
D(D—1)e?u—a?D'(D'—1)e2u=F(¢*) + F, ()¢,
L @Pu A Fy(x)+F (x)y
Rrrml dy*— a%y?

The solution of this equation will put us in possession of the complete value of w,
the functions Fy(x), F;(x) admitting of either positive or negative indices in their de-
velopments. If we assume those functions to vanish, we get

w=¢(y+az) +(y—az),
which is a particular value of the generating function.

Many otber developments and applications might be here given, were the subject
of sufficient importance to justify farther detail.

E. dpplication of the Theory of Series to the Evaluation of certain Definite Integrals.

Ex. 1. The function (1—2v cos w+-»2)~" being expanded in a series of the form
Ag+2(A, cos w4 A, cos 2w+ A; cos 3w+ &e.),

it is required to determine the general coefficient A.,.

We have
(1—2vcos w4-1%)=n=(1 — yg=V=1)=n X (1 —pg=@V=1)~n,

“(l-i—me“”' 1+n(n+]) g2V = 1+n(n+i12)(g+2)v33 V- l—l-&c)

n41)(n+2
“Mg.l__.)Q_féwg_)y3s—3u~/‘-l+&c-);

and the quantity sought, A,, will be the common coefficient of #+¥~1 and ¢~rv-1 jn
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the above product. Hence

A=1% 7&(%-#1; gz?—}-?‘ 1) 'r+ 1 ﬁiﬂjM;tQWH

n{n41 nn D.(n+r+1 . .
+ ( ’* ( +1.)2'.(7‘+ 2+ )ﬂ+4+&c. ad infinttum.

Put »2=¢, then .
A _tzzm_m(umtm)j . . . . . . . . . (77‘)

n(e+1).(n+m— I)Xn(n—l—l)..(n—l—r—i-m-l) |

wherein generally  w, =——75- S ) 3

the law of derivation being

(n4+m~1)(n+r+m—1) 7 _
m m(m +1‘) u‘m—l‘—‘o'

Hence, if 3 1"=u, and if #=¢, then

_D+a=1){D+r+n—1), nr+l).(n+r—1)
DD +7) ey = 137 =U . . . . (78)

To integrate this equation, assume -

v—glp=V,
_p D+—1)D+r+a—1)
Then U= P DD %7 v,

=(D+n—1)D4+n—2)..(D4 1).(D+r+n-— D.(D+r41),
U=D+n—-1)(D+n—2)..(D4+1).(D+r+n—1)..(D-+r41)V.
Hence determining V, we have
g nn+1).(n+r—1) 1
v—Ev= 1.2.r 12.a=1).+ 1) (r +2)(r +n—1)
1 1 |
(2. (a=1)2 T {I(n)}¥’

1
- VE T pa—ey

Now u=(D4r+n—1).(D+r41).(D+n—1)..(D+1)y,
but (Dtrn—1).Dr+ )=t () 7o,
d\ 71
and (D+n—1)..(D+1)= <-~ -,
hence ””’”T(dz) o (dt) T }2(1—z
A n—-ltn—l n-1 .
But (ﬁ T ( dt) 1 ; (this may be shown by expansion)

_12.n—=1_ T(n
A= T (a=”
MDCCCXLIV. ' 2N
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. n—1 tr+n—-l .
therefore u=t ( dt) Twa=p"
n—1 t7+n——
and — . . . ‘. . . . . . . . ’. o . (79.)

wherein =12, a formula of great simplicity.
Hence then we find

7 daxcosry ™ d "1 grin—l
— £ . . e e e ... (80.
o (1—2vcosx++A)" r (dt) 1-—2" (80.)

LEeGENDRE has, 1 beliéve, considered the above definite integral, but I am not ac-
quainted with the results of his analysis.
The following expression for the value V of the definite integral

f 7 dz cosra
0 (L—2v,cos & +v,*){(1—2v,cos2 +,°)"...0 factors

is remarkable for its symmetry,

IR A AN e P AN S A |
V=rate-() () et DG AR b @)
wherein, after effecting the differentiations, we must change ¢, into »2, ¢, into »2, &e.,
observing that

f1— AR AAL
UG-G -6

1 t3
G2 () (%)
and so on for the rest.

Ex. 2. To express by a partial differential equation the fandamental properties of
the definite multiple integral

’

u=/ff.drv,dr,.dx,p(ay~x), ag—xp.0,—2) . . . . . . (82)
the integrations extending to all real values of m1w2 .z, subject to the inequality
+h 20 +h 2<

We may consider the above integral as derived from the more general one,
u=[f..dx,dx,..dx,p(a,— 2, ay—xst...0,—x,1),
by the assumption ¢=1. If we expand ¢(a,— )¢, a,—a,t..a,—x,t) in ascending powers
of ¢, and integrate within the proposed limits by the aid of DiricuLET's theorem, we
find
g o 1
= I‘(%) p=0 24.2p.7(n+ 2).(n+ 2p)

APEPQ(anay..00,), - . . . (83.)

herei N R T T T
wherein A2=h, dalg+lz2 d%g—l-hn a2

* Cambridge Mathematical Journal, No. XIV. p. 69.
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If we write the above series in the form w=3u,_¢", then it is easily seen that

A2 2h112717r Coe e e e (84.)

Hence, if t=¢, u— D(D+n)‘ Yy = nI‘( )

D(D+n)u — 1224 =0.
Restoring ¢, and for A% writing
a? d? d?
}llzm—l—kgzatgg' ' —I— hnzmz
and then dividing the result by #2, we have

2,
dt2+”j1 == —h2s=0,. . . . . . (85)
which is the equation sought.

Mr. Green#*, considering a particular case of this multiple integral connected
with the theory of the attractions of ellipsoids, has obtained an equation different
from the above, and not involving the constants Ah,..k,. It might be worth while
to inquire whether the equation (85.) does not more precisely define the function to
be determined than Mr. GREEN’s equation does, and whether an analysis might not be
founded upon it which should be more simple, and less dependent on foreign consi-
derations. It would too much extend the limits of this paper to enter into the general
discussion of the equation here, and I shall therefore merely observe that it is re-
ducible whenever n is an odd integer, to the form

d*u d?u d? u du
— e ) B e fp 2 —
T hy da? h2 da? hn 7 7=0. . . . . . . (86.)

n
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